Abstract

Abstract Nowadays, the physiopathological and molecular mechanisms of multiple diseases have been identified, thus helping scientists to provide a clear answer, especially to those ambiguities related to chronic illnesses. This has been accomplished in part through the contribution of a key discipline known as bioinformatics. In this study, the bioinformatics approach was applied on four compounds identified in Centaurea tougourensis, using two axes of research: an in silico study to predict the molecular characteristics, medicinal chemistry attributes as well as the possible cardiotoxicity and adverse liability profile of these compounds. In this context, four compounds were selected and named, respectively, 2,5-monoformal-l-rhamnitol (compound 1), cholest-7-en-3.beta.,5.alpha.-diol-6.alpha.-benzoate (compound 2), 7,8-epoxylanostan-11-ol, 3-acetoxy- (compound 3), and 1H-pyrrole-2,5-dione, 3-ethyl-4-methyl- (compound 4). The second part looked into molecular docking, which objective was to evaluate the possible binding affinity between these compounds and the serotonin 5-hydroxytryptamine 2A (5-HT2A) receptor. Results indicated that compounds 1 and 4 were respecting Pfizer and giant Glaxo-SmithKline rules, while compounds 2 and 3 exhibited an optimal medicinal chemistry evolution 18 score. The structural and molecular features of almost all tested compounds could be considered optimal, indicating that these phyto-compounds may possess drug-likeness capacity. However, only compounds 1 and 4 could be considered non-cardiotoxic, but with a level of confidence more pronounced for compound 1 (80%). In addition, these four biocompounds could preferentially interact with G protein-coupled receptor, ion channel, transporters, and nuclear receptors. However, the heat map was less pronounced for compound 2. Data also indicated that these four compounds could possibly interact with serotonin 5-HT2A receptor, but in an antagonistic way. This research proved once again that plants could be crucial precursors of pharmaceutical substances, which could be helpful to enrich the international pharmacopoeia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.