Abstract
Spectral pitch similarity (SPS) is a measure of the similarity between spectra of any pair of sounds. It has proved powerful in predicting perceived stability and fit of notes and chords in various tonal and microtonal instrumental contexts, that is, with discrete tones whose spectra are harmonic or close to harmonic. Here we assess the possible contribution of SPS to listeners’ continuous perceptions of change in music with fewer discrete events and with noisy or profoundly inharmonic sounds, such as electroacoustic music. Previous studies have shown that time series of perception of change in a range of music can be reasonably represented by time series models, whose predictors comprise autoregression together with series representing acoustic intensity and, usually, the timbral parameter spectral flatness. Here, we study possible roles for SPS in such models of continuous perceptions of change in a range of both instrumental (note-based) and sound-based music (generally containing more noise and fewer discrete events). In the first analysis, perceived change in three pieces of electroacoustic and one of piano music is modeled, to assess the possible contribution of (de-noised) SPS in cooperation with acoustic intensity and spectral flatness series. In the second analysis, a broad range of nine pieces is studied in relation to the wider range of distinctive spectral predictors useful in previous perceptual work, together with intensity and SPS. The second analysis uses cross-sectional (mixed-effects) time series analysis to take advantage of all the individual response series in the dataset, and to assess the possible generality of a predictive role for SPS. SPS proves to be a useful feature, making a predictive contribution distinct from other spectral parameters. Because SPS is a psychoacoustic “bottom up” feature, it may have wide applicability across both the familiar and the unfamiliar in the music to which we are exposed.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have