Abstract

Spectral partitioning methods use the Fiedler vector-the eigenvector of the second-smallest eigenvalue of the Laplacian matrix-to find a small separator of a graph. These methods are important components of many scientific numerical algorithms and have been demonstrated by experiment to work extremely well. In this paper, we show that spectral partitioning methods work well on bounded-degree planar graphs and finite element meshes-the classes of graphs to which they are usually applied. While active spectral bisection does not necessarily work, we prove that spectral partitioning techniques can be used to produce separators whose ratio of vertices removed to edges cut is O(/spl radic/n) for bounded-degree planar graphs and two-dimensional meshes and O(n/sup 1/d/) for well-shaped d-dimensional meshes. The heart of our analysis is an upper bound on the second-smallest eigenvalues of the Laplacian matrices of these graphs: we prove a bound of O(1/n) for bounded-degree planar graphs and O(1/n/sup 2/d/) for well-shaped d-dimensional meshes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.