Abstract
This paper introduces a parallel computing framework based on the Spectral Partitioning (SP) method designed to enhance the computational efficiency of large-scale microscopic traffic simulation (LSMTS). The framework employs the SP method to partition road networks, taking into account vehicle information and road information as constitutive components for node weight determination. Micro-simulation relies on vehicle information from both preceding and following vehicles to accurately infer the operational states of a vehicle. However, network partitioning can disrupt the flow of vehicle information, resulting in its loss. To address this, the proposed framework incorporates a boundary transmission method to ensure simulation accuracy and precision. This study presents an improved SP (iSP) method tailored for LSMTS, further enhancing the partitioning results achieved through the SP method. Lastly, the framework's validity is confirmed through road network experiments of varying scales and densities, with comparisons made to existing parallel simulation methods. The results demonstrate that the framework significantly reduces the execution time of simulation tasks while maintaining a high level of load balance and minimizing communication overhead.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transportation Research Part E: Logistics and Transportation Review
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.