Abstract

The present study investigates the nature of spectral envelope perception using a spectral modulation detection task in which sinusoidal spectral modulation is superimposed upon a noise carrier. The principal goal of this study is to characterize spectral envelope perception in terms of the influence of modulation frequency (cycles/octave), carrier bandwidth (octaves), and carrier frequency region (defined by lower and upper cutoff frequencies in Hz). Spectral modulation detection thresholds measured as a function of spectral modulation frequency result in a spectral modulation transfer function (SMTF). The general form of the SMTF is bandpass in nature, with a minimum modulation detection threshold in the region between 2 to 4 cycles/octave. SMTFs are not strongly dependent on carrier bandwidth (ranging from 1 to 6 octaves) or carrier frequency region (ranging from 200 to 12 800 Hz), with the exception of carrier bands restricted to very low audio frequencies (e.g., 200-400 Hz). Spectral modulation detection thresholds do not depend on the presence of random level variations or random modulation phase across intervals. The SMTFs reported here and associated excitation pattern computations are considered in terms of a linear systems approach to spectral envelope perception and potential underlying mechanisms for the perception of spectral features.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call