Abstract

Accretion disks are three-dimensional, turbulent, often self-gravitating, magnetohydrodynamic flows, which can be modeled in detail with numerical simulations. In this paper, we present a new algorithm that is based on a spectral decomposition method to simulate such flows. Because of the high order of the method, we can solve the induction equation in terms of the magnetic potential and, therefore, ensure trivially that the magnetic fields in the numerical solution are divergence free. The spectral method also suffers minimally from numerical dissipation and allows for an easy implementation of models for sub-grid physics. Both properties make our method ideal for studying MHD turbulent flows such as those found in accretion disks around compact objects. We verify our algorithm with a series of standard tests and use it to show the development of MHD turbulnce in a simulation of an accretion disk. Finally, we study the evolution and saturation of the power spectrum of MHD turbulence driven by the magnetorotational instability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.