Abstract

In this paper, Fourier spectral approximation for the time fractional Boussinesq equation with periodic boundary condition is considered. The space is discretized by the Fourier spectral method and the Crank–Nicolson scheme is used to discretize the Caputo time fractional derivative. Stability and convergence analysis of the numerical method are proven. Some numerical examples are included to testify the effectiveness of our given method. Based on the presented numerical results, the Fourier spectral method is shown to be effective for solving the time fractional Boussinesq equation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.