Abstract
In this paper, the Chebyshev polynomials expansion method is applied to find both an analytical solution of the fractional transport equation in the one-dimensional plane geometry and its numerical approximations. The idea of the method is in reducing of the fractional transport equation to a system of the linear fractional differential equations for the unknown coefficients of the Chebyshev polynomials expansion. The obtained system of equations is then solved by using the operational method for the Caputo fractional derivative.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have