Abstract
The radiation oxidation of Be in water at room temperature in the absorbed dose range Dγ = 0.5…180 kGy was studied by radiothermoluminescence (RTL), infrared reflection-adsorption spectroscopy (IRRAS), and electrical conductivity. The participation and role of surface relaxing intermediate-active particles in the dynamics of changes in the oxidation process are considered. Using the RTL method, the role of surface oxygen hole centers generated by γ-irradiation and chemisorbed oxygen in the formation of nanooxide films was experimentally established. The formation of nanooxide films on the surface of Be in water was traced in the IR reflection spectra. The kinetics of radiation oxidation of beryllium has been studied and its radiation passivation has been established. According to the logarithmic dose dependence of the surface resistivity Be, two stages of the oxidation process were revealed. It is shown that the formation of nano oxide films leads to a decrease in the surface electrical conductivity of beryllium by 2 orders of magnitude and an increase in the thickness of oxide films by 1.6 times.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have