Abstract
The system consisting of a two-level atom coupled strongly to a cavity mode behaves as a two-state system when excited near one of the ``vacuum'' Rabi resonances. With finite-bandwidth squeezed light incident upon the cavity and tuned to one of these resonances, we show that it is possible to realize a two-state system coupled to a squeezed vacuum. This system exhibits subnatural linewidths in the emitted spectra, as described by Gardiner [Phys. Rev. Lett. 56, 1917 (1986)] in a study of spontaneous emission of a two-level atom in a squeezed vacuum, but requires that only a single cavity mode be subject to squeezing rather than the entire three-dimensional vacuum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physical review. A, Atomic, molecular, and optical physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.