Abstract
A random billiard is a random dynamical system similar to an ordinary billiard system except that the standard specular reflection law is replaced with a more general stochastic operator specifying the post-collision distribution of velocities for any given pre-collision velocity. We consider such collision operators for certain random billiards that we call billiards with microstructure. Collisions modeled by these operators can still be thought of as elastic and time reversible. The operators are canonically determined by a second (deterministic) billiard system that models “microscopic roughness” on the billiard table boundary. Our main purpose here is to develop some general tools for the analysis of the collision operator of such random billiards. Among the main results, we give geometric conditions for these operators to be Hilbert-Schmidt and relate their spectrum and speed of convergence to stationary Markov chains with geometric features of the microscopic billiard structure. The relationship between spectral gap and the shape of the microstructure is illustrated with several simple examples.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have