Abstract

High-resolution imaging using high numerical aperture imaging optics is commonly known to cause a narrow depth of focus, which limits the depth of field in optical coherence tomography (OCT). To achieve semi-invariant high resolution in all directions, Gabor domain optical coherence microscopy (GD-OCM) combines the in-focus regions of multiple cross-sectional images that are acquired while shifting the focal plane of the objective lens. As a result, GD-OCM requires additional processes for in-focus extraction and fusion, leading to longer processing times, as compared with conventional frequency domain OCT (FD-OCT). We previously proposed a method of spectral domain Gabor fusion that has been proven to improve the processing speed of GD-OCM. To investigate the full potential of the spectral domain Gabor fusion technique, we present the implementation of the spectral domain Gabor fusion algorithm using field programmable gate arrays (FPGAs) in a spectral acquisition hardware device. All filtering processes are now performed in an acquisition device as opposed to the post-processing of the original GD-OCM, which reduces the amount of data transfer between the image acquisition device and the processing host. To clearly demonstrate the imaging performance of the implemented system, we performed GD-OCM imaging of a stack of polymeric tapes. GD-OCM imaging was performed over seven focus zones. The results showed that the processing time for linear wavenumber calibration and spectral Gabor filtering can be improved with FPGA implementation. The total processing time was improved by about 35%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call