Abstract
The notion of spectral flow has given new insight into the motion of vortices in superfluids and superconductors. For a BCS superconductor the spectrum of low energy vortex core states is largely determined by the geometric optics limit of Andreev reflection. We use this to follow the evolution of the states when a stationary vortex is immersed in a transport supercurrent. If the core spectrum were continuous, spectral flow would convert the momentum flowing into the core via the Magnus effect into unbound quasiparticles---thus allowing the vortex to remain stationary without a pinning potential or other sink for the inflowing momentum. The discrete nature of the states, however, leads to Bloch oscillations which thwart the spectral flow. The momentum can escape only via relaxation processes. Taking these into account permits a physically transparent derivation of the mutual friction coefficients. \textcopyright{} 1996 The American Physical Society.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.