Abstract
The dynamical signatures of quantum chaos in an isolated system are captured by the spectral form factor, which exhibits as a function of time a dip, a ramp, and a plateau, with the ramp being governed by the correlations in the level spacing distribution. While decoherence generally suppresses these dynamical signatures, the nonlinear non-Hermitian evolution with balanced gain and loss (BGL) in an energy-dephasing scenario can enhance manifestations of quantum chaos. In the Sachdev-Ye-Kitaev model and random matrix Hamiltonians, BGL increases the span of the ramp, lowering the dip as well as the value of the plateau, providing an experimentally realizable physical mechanism for spectral filtering. The chaos enhancement due to BGL is optimal over a family of filter functions that can be engineered with fluctuating Hamiltonians.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.