Abstract

Spectral direct numerical simulations of incompressible MHD turbulence at a resolution of up to 1024(3) collocation points are presented for a statistically isotropic system as well as for a setup with an imposed strong mean magnetic field. The spectra of residual energy, E(R)k=|E(M)k - E(K)k|, and total energy, Ek=E(K)k+E(M)k, are observed to scale self-similarly in the inertial range as E(R)k approximately k(-7/3), E(k)approximately k(-5/3) (isotropic case) and E(R)(k(perpendicular) approximately k(-2)(perpendicular), E(k(perpendicular))approximately k(-3/2)(perpendicular) (anisotropic case, perpendicular to the mean field direction). A model of dynamic equilibrium between kinetic and magnetic energy, based on the corresponding evolution equations of the eddy-damped quasinormal Markovian closure approximation, explains the findings. The assumed interplay of turbulent dynamo and Alfvén effect yields E(R)k approximately kE2(k), which is confirmed by the simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.