Abstract

A new subgrid-scale model called the spectral-dynamic model is proposed. It consists of a refinement of spectral eddy-viscosity models taking into account nondeveloped turbulence in the subgrid-scales. The proposed correction, which is derived from eddy-damped quasi-normal Markovian statistical theory, is based on an adjustment of the turbulent eddy-viscosity coefficient to the deviation of the spectral slope (at small scales) with respect to the standard Kolmogorov law. The spectral-dynamic model is applied to large eddy simulation (LES) of rotating and nonrotating turbulent plane channel flows. It is shown that the proposed refinement allows for clear improvement of the statistical predictions due to a correct prediction of the near-wall behavior. Cases of rotating and nonrotating low (DNS) and high Reynolds (LES) numbers are then compared. It is shown that the principal structural features of the rotating turbulent channel flow are reproduced by the LES, such as the presence of the near-zero mean absolute vorticity region, the modification of the anisotropic character of the flow (with respect to the nonrotating case), the enhancement of flow organization, and the inhibition of the high- and low-speed streaks near the anticyclonic wall. Only a moderate Reynolds number dependence is exhibited, resulting in a more unstable character of the longitudinal large-scale roll cells at high Reynolds number, and a slight increase of the laminarization tendency on the cyclonic side of the channel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call