Abstract

A hybrid method combining large eddy simulation (LES) with the Reynolds-averaged Navier-Stokes (RANS) equation is used to simulate a turbulent channel flow at high Reynolds number. It is known that the mean velocity profile has a mismatch between the RANS and LES regions in hybrid simulations of a channel flow. The velocity mismatch is reproduced and its dependence on the location of the RANS/LES interface and on the type of RANS model is examined in order to better understand its properties. To remove the mismatch and to obtain better velocity profiles, additional filtering is applied to the velocity components in the wall-parallel planes near the interface. The additional filtering was previously introduced to simulate a channel flow at low Reynolds number. It is shown that the filtering is effective in reducing the mismatch even at high Reynolds number. Profiles of the velocity fluctuations of runs with and without the additional filtering are examined to help understand the reason for the mismatch. Due to the additional filtering, the wall-normal velocity fluctuation increases at the bottom of the LES region. The resulting velocity field creates the grid-scale shear stress more efficiently, and an overestimate of the velocity gradient is removed. The dependence of the velocity profile on the grid point number is also investigated. It is found that the velocity gradient in the core region is underestimated in the case of a coarse grid. Attention should be paid not only to the velocity mismatch near the interface but also to the velocity profile in the core region in hybrid simulations of a channel flow at high Reynolds number.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call