Abstract
Purpose: To describe the spectral-domain optical coherence tomography features of chorioretinal folds of various etiology. Materials and methods: Cross-sectional observational case series of consecutive patients with chorioretinal folds. All patients underwent enhanced depth imaging optical coherence tomography over a two-month study period. Clinical variables and imaging features including subfoveal choroidal thickness and chorioretinal fold morphology were analysed. Results: 11 of 628 patients evaluated presented with chorioretinal folds. Diagnoses included hyperopia, uveal effusion, and secondary to surgery or medications. 22 patients presented with lesions simulating chorioretinal folds on ophthalmoscopy but were found not to be true chorioretinal folds with optical coherence tomography. Subfoveal choroidal thickness was diffusely thick in hyperopia, uveal effusion, hypotony, and topiramate, and normal in cases following scleral buckle and trauma. Lesions simulating chorioretinal folds occurred in age-related choroidal atrophy, and demonstrated chorioretinal contour changes involving specific choroidal vessels in an overall thin choroid. Conclusion: Chorioretinal folds occurred in the context of a diffusely thick choroid in high hyperopia and hypotony, and with a normal choroidal thickness following scleral buckle or trauma. Enhanced depth imaging OCT is helpful in differentiating chorioretinal folds from various etiologies and from simulating lesions.
Highlights
Chorioretinal folds (CRF), or infoldings of the inner choroid, retinal pigment epithelium, and retina were originally described by Nettleship [1], and have been further characterized by Norton [2] and Newell [3] using ophthalmoscopy and fluorescein angiography in various posterior segment diseases
The term choroidal folds and chorioretinal folds have often been used interchangeably, the former has occasionally been used to denote folds of the choroid and retinal pigment epithelium occurring without evidence of distortion of the overlying inner retinal tissue
The authors hypothesized that enhanced depth imaging SD-OCT may reveal specific aspects of the choroid that may be helpful in understanding CRF pathogenesis
Summary
Chorioretinal folds (CRF), or infoldings of the inner choroid, retinal pigment epithelium, and retina were originally described by Nettleship [1], and have been further characterized by Norton [2] and Newell [3] using ophthalmoscopy and fluorescein angiography in various posterior segment diseases. Previous imaging reports have included angiography, fundus autofluorescence [13], and time-domain optical coherence tomography [12], but have lacked the resolution possible with current spectraldomain (SD-OCT) technology. The authors hypothesized that enhanced depth imaging SD-OCT may reveal specific aspects of the choroid that may be helpful in understanding CRF pathogenesis. The purpose of the present report was to investigate the morphology of chorioretinal folds as imaged by high resolution SDOCT, and to investigate aspects of choroidal thickness and morphology using enhanced depth imaging (EDI)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Clinical & Experimental Ophthalmology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.