Abstract

We consider a family of non-compact manifolds Xε (“graph-like manifolds”) approaching a metric graph X0 and establish convergence results of the related natural operators, namely the (Neumann) Laplacian $$\Delta _{X_{\epsilon}}$$ and the generalized Neumann (Kirchhoff) Laplacian $$\Delta _{X_0 } $$ on the metric graph. In particular, we show the norm convergence of the resolvents, spectral projections and eigenfunctions. As a consequence, the essential and the discrete spectrum converge as well. Neither the manifolds nor the metric graph need to be compact, we only need some natural uniformity assumptions. We provide examples of manifolds having spectral gaps in the essential spectrum, discrete eigenvalues in the gaps or even manifolds approaching a fractal spectrum. The convergence results will be given in a completely abstract setting dealing with operators acting in different spaces, applicable also in other geometric situations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.