Abstract
We study the spectrum of complete noncompact manifolds with bounded curvature and positive injectivity radius. We give general conditions which imply that their essential spectrum has an arbitrarily large finite number of gaps. In particular, for any noncompact covering of a compact manifold, there is a metric on the base so that the lifted metric has an arbitrarily large finite number of gaps in its essential spectrum. Also, for any complete noncompact manifold with bounded curvature and positive injectivity radius we construct a metric uniformly equivalent to the given one (also of bounded curvature and positive injectivity radius) with an arbitrarily large finite number of gaps in its essential spectrum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.