Abstract
Spectral clustering, a graph partitioning technique, has gained immense popularity in machine learning in the context of unsupervised learning. This is due to convincing empirical studies, elegant approaches involved and the theoretical guarantees provided in the literature. To tackle some challenging problems that arose in computer vision etc., recently, a need to develop spectral methods that incorporate multi-way similarity measures surfaced. This, in turn, leads to a hypergraph partitioning problem. In this paper, we formulate a criterion for partitioning uniform hypergraphs, and show that a relaxation of this problem is related to the multilinear singular value decomposition (SVD) of symmetric tensors. Using this, we provide a spectral technique for clustering based on higher order affinities, and derive a theoretical bound on the error incurred by this method. We also study the complexity of the algorithm and use Nystr ̈om’s method and column sampling techniques to develop approximate methods with significantly reduced complexity. Experiments on geometric grouping and motion segmentation demonstrate the practical significance of the proposed methods.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.