Abstract
Graphs are a tremendously suitable data representation that models the relationships of entities in many application domains, such as recommendation systems, machine learning, computational biology, social network analysis, and other application domains. Graphs with many vertices and edges have become quite prevalent in recent years. Therefore, graph computing systems with integrated various graph partitioning techniques have been envisioned as a promising paradigm to handle large-scale graph analytics in these application domains. However, scalable processing of large-scale graphs is challenging due to their high volume and inherent irregular structure of the real-world graphs. Hence, industry and academia have recently proposed graph partitioning and computing systems to efficiently process and analyze large-scale graphs. The graph partitioning and computing systems have been designed to improve scalability issues and reduce processing time complexity. This paper presents an overview, classification, and investigation of the most popular graph partitioning and computing systems. The various methods and approaches of graph partitioning and diverse categories of graph computing systems are presented. Finally, we discuss future challenges and research directions in graph partitioning and computing systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.