Abstract

ABSTRACT Spectral clustering is a popular method for community detection in network graphs: starting from a matrix representation of the graph, the nodes are clustered on a low-dimensional projection obtained from a truncated spectral decomposition of the matrix. Estimating correctly the number of communities and the dimension of the reduced latent space is critical for good performance of spectral clustering algorithms. Furthermore, many real-world graphs, such as enterprise computer networks studied in cyber-security applications, often display heterogeneous within-community degree distributions. Such heterogeneous degree distributions are usually not well captured by standard spectral clustering algorithms. In this article, a novel spectral clustering algorithm is proposed for community detection under the degree-corrected stochastic blockmodel. The proposed method is based on a transformation of the spectral embedding to spherical coordinates, and a novel modeling assumption in the transformed space. The method allows for simultaneous and automated selection of the number of communities and the latent dimension for spectral embeddings of graphs with uneven node degrees. Results show improved performance over competing methods in representing computer networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.