Abstract

This experimental study delves into the spectral analysis of five discrete spectral lamps, namely helium, sodium, mercury, cadmium and zinc, utilizing a suite of scientific instrumentation including an optical spectrometer with converging lenses and a diffraction grating. The primary objective is to determine the wavelengths corresponding to visible spectral lines emitted by these lamps. Calibration of the spectrometer with the helium lamp facilitated the derivation of the diffraction grating constant. Subsequent measurements of diffraction angles allowed for the computation of experimental wavelengths, which were then compared with theoretical values. Analysis revealed slight discrepancies between experimental and theoretical values, likely attributed to systematic errors such as extraneous light sources and parallax errors in angle measurements. Furthermore, examination of spectral line splitting demonstrated the removal of degeneracy within specified energy levels, resulting in the observation of distinct spectral components. Overall, this study underscores the significance of meticulous experimental techniques in the elucidation of fundamental physical phenomena and highlights the interplay between theory and observation in spectral analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call