Abstract
The structure, IR absorption spectra, morphology, and spectral characteristics of compounds Lu1 – x – y Ce x Tb y BO3 have been investigated. It has been shown that the Tb3+ luminescence excitation spectrum of the Lu1 – x – y Ce x Tb y BO3 compounds is dominated by a broad band coinciding with the excitation band of Ce3+ ions, which clearly indicates energy transfer from the Ce3+ ions to the Tb3+ ions. The spectral position of this band depends on the structural state of the sample: in the structures of calcite and vaterite, the band has maxima at ~339 and ~367 nm, respectively. By varying the ratio between the calcite and vaterite phases in the sample, it is possible to purposefully change the Tb3+ luminescence excitation spectrum, which is important for the optimization of the spectral characteristics of Lu1 – x – y Ce x Tb y BO3 when it is used in light-emitting diode sources. An estimate has been obtained for the maximum distance between Ce3+ and Tb3+ ions, which corresponds to electronic excitation energy transfer. It has been shown that the high intensity of Tb3+ luminescence in these compounds is due to the high efficiency of electronic excitation energy transfer from the Ce3+ ions to the Tb3+ ions as a result of the dipole–dipole interaction.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have