Abstract
As an intermediate band (IB) originating from discrete nitrogen (N) levels is formed in GaP:N with increasing N concentration, GaP1−xNx alloy is considered to be a promising candidate for IB‐type solar cells. We studied the IB luminescence of a GaP1−xNx with 0.56% N and detected carrier recombination (CR) levels by superposing a below‐gap excitation (BGE) light of 1.17 eV. We resolved a high‐energy component of 2.15 eV in the IB luminescence, Ihigh, from total luminescence intensity Iall. With increasing the BGE density at fixed temperature of 5 K, the amount of decrease in Ihigh was distinctly smaller than that of simple temperature rise without the BGE at the same Iall value. We conclude that the observed intensity change of the IB luminescence due to the BGE comes not from thermal activation, but from optical excitation among the IB, conduction band, and CR levels in GaP1−xNx. It is of primal importance to understand CR levels toward determining their origins and eliminating them for realization of efficient IB‐type solar cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.