Abstract

In a bounded Lipschitz domain, we consider a strongly elliptic second-order equation with spectral parameter without assuming that the principal part is Hermitian. For the Dirichlet and Neumann problems in a weak setting, we prove the optimal resolvent estimates in the spaces of Bessel potentials and the Besov spaces. We do not use surface potentials. In these spaces, we derive a representation of the resolvent as a ratio of entire analytic functions with sharp estimates of their growth and prove theorems on the completeness of the root functions and on the summability of Fourier series with respect to them by the Abel-Lidskii method. Preliminarily, such questions for abstract operators in Banach spaces are discussed. For the Steklov problem with spectral parameter in the boundary condition, we obtain similar results. We indicate applications of the resolvent estimates to parabolic problems in a Lipschitz cylinder. We also indicate generalizations to systems of equations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.