Abstract
The objective of this study is to find a better method for sub-pixel classification of vegetation. The proposed new technique of a linear mixing model (LMM) is the sequential combination of spectral LMM and temporal LMM. Sub-pixel components of ‘relative green vegetation’ are derived by spectral LMM; sub-pixel components of vegetation types are estimated by subsequent temporal LMM. The proposed method was applied to five temporal Landsat Enhanced Thematic Mapper (ETM) images for the year 2000 for areas south of Lake Baikal, Russia. Dominant vegetation types there are pine, birch/aspen, shrubs and wheat with weedy plants. Ground truth data of vegetation types were prepared by field survey and visual interpretation of Landsat ETM images by experts. Both the comparisons of classification results among the proposed method and conventional LMM methods and the simulation results among them indicate that the proposed spectral and temporal LMM has better accuracy than conventional methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.