Abstract
Wind Turbine Array Boundary Layer (WTABL) is a relatively simple, yet useful theoretical conceptualization to study very large wind farms in atmospheric boundary layer (ABL). In the current paper, we perform a high-fidelity LES investigation of a 3 × 3 wind turbine array in a WTABL framework, with a main focus on extending the work beyond the simple analytical model and providing a rigorous fundamental understanding of the dynamic behaviour of length scales, their scaling laws and the anisotropic structure of the energy containing eddies responsible for power generation from the wind turbines. This is accomplished by studying the components of energy and shear-stress spectra in the flow. This knowledge can potentially provide an efficient way to control the wind farm power output as well as serve as a stepping stone to design efficient low order numerical models for predicting farm power and dynamics at reduced computational expense.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have