Abstract

Ocular microtremor (OMT) is a biological high frequency (up to 150Hz) low amplitude (25-2500nm peak to peak) involuntary motion of the human eye. Clinical OMT investigations to date have used eye-contacting mechanical piezoelectric probes or piezoelectric strain gauges. Before contact can be made, the eye must first be anaesthetized. In some cases, this eyelid spasms occur making it impossible to measure OMT. Using the contact probe method, the eye motion is mechanically loaded. Results from clinical studies with this method to date have given electrical signal amplitudes from the probe proportional to the displacement, but not the exact displacement information. Recent studies suggest a number of clinical applications for OMT, these include monitoring the depth of anesthesia of a patient in surgery, prediction of outcome in coma, diagnosis of brain stem death. In addition to this, in patients with neurological disorders such as Multiple Sclerosis and Parkinson's disease, abnormal OMT frequency content is present. In this paper, we design a compact non-contact phase modulating optical fiber speckle interferometer to measure eye motions. We simulate OMT motion using a calibrated piezoelectric vibration simulator and compare results produced using a contact method with those using our optical non-contact method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.