Abstract

Ocular microtremor (OMT) is a physiological high-frequency (up to 150 Hz) low-amplitude (25-2500 nm peak-to-peak) involuntary motion of the human eye. Recent studies suggest a number of clinical applications for OMT that include monitoring the depth of anesthesia of a patient in surgery, prediction of outcome in coma, and diagnosis of brain stem death. Clinical OMT investigations to date have used mechanical piezoelectric probes or piezoelectric strain gauges that have many drawbacks which arise from the fact that the probe is in contact with the eye. We describe the design of a compact noncontact sensing device to measure OMT that addresses some of the above drawbacks. We evaluate the system performance using a calibrated piezoelectric vibrator that simulates OMT signals under conditions that can occur in practice, i.e., wet eye conditions. We also test the device at low light levels well within the eye safety range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.