Abstract

Three high-performance concrete (HPC) materials with different specimen geometries were characterized using Kolsky compression bar techniques to study the strain rate and specimen size effects on their uniaxial compressive strength. A large-diameter Kolsky bar and recently established annular pulse shaping technique were used to achieve dynamic stress equilibrium and constant strain-rate deformation in the experiments. A complimentary effort was conducted using a 19-mm-diameter Kolsky compression bar to understand the strain rate and specimen size effects on failure strength and dynamic increase factor (DIF) for concrete. It was found that, for all three concrete materials investigated, the failure strength is highly dependent on the specimen geometry, however such a relationship is not apparent for the DIF. The DIF observed in this study shows significantly lower values compared to historical data, which may indicate the importance of well-controlled dynamic testing conditions on the accuracy and validity of experimental results for concrete materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call