Abstract

Optimal realizations of quantum technology tasks lead to the necessity of a detailed analytical study of the behavior of a d-level quantum system (qudit) under a time-dependent Hamiltonian. In the present article, we introduce a new general formalism describing the unitary evolution of a qudit in terms of the Bloch-like vector space and specify how, in a general case, this formalism is related to finding time-dependent parameters in the exponential representation of the evolution operator under an arbitrary time-dependent Hamiltonian. Applying this new general formalism to a qubit case , we specify the unitary evolution of a qubit via the evolution of a unit vector in , and this allows us to derive the precise analytical expression of the qubit unitary evolution operator for a wide class of nonstationary Hamiltonians. This new analytical expression includes the qubit solutions known in the literature only as particular cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.