Abstract

We propose, formulate and examine novel quantum systems and behavioral phases in which momentary choices of the system's memories interact in order to source the internal interactions and unitary time evolutions of the system. In a closed system of the kind, the unitary evolution operator is updated, moment by moment, by being remade out of the system's `experience', that is, its quantum state history. The `Quantum Memory Made' Hamiltonians (QMM-Hs) which generate these unitary evolutions are Hermitian nonlocal-in-time operators composed of arbitrarily-chosen past-until-present density operators of the closed system or its arbitrary subsystems. The time evolutions of the kind are described by novel nonlocal nonlinear von Neumann and Schrödinger equations. We establish that nontrivial Purely-QMM unitary evolutions are `Robustly Non-Markovian', meaning that the maximum temporal distances between the chosen quantum memories must exceed finite lower bounds which are set by the interaction couplings. After general formulation and considerations, we focus on the sufficiently-involved task of obtaining and classifying behavioral phases of one-qubit pure-state evolutions generated by first-to-third order polynomial QMM-Hs made out of one, two and three quantum memories. The behavioral attractors resulted from QMM-Hs are characterized and classified using QMM two-point-function observables as the natural probes, upon combining analytical methods with extensive numerical analyses. The QMM phase diagrams are shown to be outstandingly rich, having diverse classes of unprecedented unitary evolutions with physically remarkable behaviors. Moreover, we show that QMM interactions cause novel purely-internal dynamical phase transitions. Finally, we suggest independent fundamental and applied domains where the proposed `Experience Centric' Unitary Evolutions can be applied natuarlly and advantageously.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call