Abstract
This study examined the transport behavior of Aldrich humic acid (AHA) in low natural organic carbon content sediment contaminated with tetrachloroethene (PCE), for comparison to a nonionic surfactant mixture previously examined in the same system. Tracking of individual molecular weight (MW) fractions of AHA was attempted by UV absorbance, followed by conversion to mass of carbon using specific ultraviolet absorbance (SUVA) (UV absorbance per mass of carbon) measurements. The analysis required determination of variations of SUVA with MW, which showed a maximum at 10 000 Daltons. Furthermore, SUVAs of AHA MW fractions greater than about 10 000 Daltons increased following AHA interaction with sediment in batch experiments, and this was associated with AHA-driven leaching of cations from the sediment. AHA transport was examined in a series of three columns representing the up-gradient, residual-zone, and down-gradient portions of a DNAPL contaminated site. SUVAs of larger MW AHA fractions cycled through decreased, increased, and eventual return to influent values during the early, intermediate, and final stages of breakthrough, respectively. These variations were attributable to a combination of preferential adsorption of low MW fractions of the AHA during early breakthrough and AHA-driven leaching of sediment cations during intermediate breakthrough, with eventual exhaustion of sediment cation complexation during the final stage of breakthrough. The complex variations in SUVA precluded accurate conversion of measured UV absorbance to carbon mass. However, the effect of AHA loss to sediment on the solubilizing capacity of the AHA solution was indicated by the breakthrough behavior of AHA-solubilized PCE, which showed that AHA loss from the aqueous phase during transport in this system did not decrease the solubilizing capacity of the AHA mixture.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have