Abstract

The North China Plain is the main grain production district in China, with a large area of well irrigation resulting in a large groundwater depression cone. In the 1970s and 1980s, small-scale managed aquifer recharge (MAR) projects were developed to recharge shallow groundwater, which played an important role in ensuring stable and high crop yields. MAR projects are divided into 10 types based on local water conservancy characteristics. The combined use of well–canal irrigation has been widespread in the Yellow River Irrigation District of Shandong Province for nearly 40 years, where canals play multiple roles of transporting and storing Yellow River water or local surface water, recharging groundwater and providing canal irrigation. Moreover, the newly developed open channel–underground perforated pipe–shaft–water saving irrigation system can further expand the scope and amount of groundwater recharge and prevent system clogging through three measures. Finally, an adaptability zoning evaluation system of water spreading has been established in Liaocheng City of Shandong Province based on the following five factors: groundwater depth, thickness of fine sand, specific yield, irrigation return flow, and groundwater extraction intensity. The results show that MAR is more adaptable to the western region than to the eastern and central regions.

Highlights

  • Managed aquifer recharge (MAR) is the intentional recharge of water to aquifers for subsequent recovery or environmental benefits, and MAR projects must achieve effective aquifer recharge under different terrains, hydrogeological conditions, water sources, and water demand characteristics [1]

  • The zoning map for the adaptability zoning evaluation is obtained by ArcGIS in accordance with the spatial distribution of the recharge potential (Figure 9)

  • The results show that the western part of Liaocheng City is a suitable area for MAR

Read more

Summary

Introduction

Managed aquifer recharge (MAR) is the intentional recharge of water to aquifers for subsequent recovery or environmental benefits, and MAR projects must achieve effective aquifer recharge under different terrains, hydrogeological conditions, water sources, and water demand characteristics [1]. As an effective water resources management measure, MAR has been widely used in many countries, especially in semi-arid and arid areas [2,3,4]. The North China Plain is the main grain-producing area in. Agricultural irrigation requires a large amount of water and mainly relies on groundwater extraction, resulting in a large area of groundwater overexploitation. In the 1970s and 1980s, a variety of small-scale MAR projects were developed to recharge shallow groundwater, and they played an important role in ensuring stable and high yields of crops [5]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call