Abstract
High particulate matter (PM) pollution frequently occurs in winter over northern China , resulting in threats to human health. To date, there are limited studies to link source apportionments and health risk assessments in the different size-resolved PM samples during high PM events. In this study, size-segregated PM samples were collected in Linfen, a typical coal-burning city, in northern China during a wintertime haze pollution. In addition to water-soluble ions and carbon contents, metallic elements in the different size-segregated PM samples were also determined for health risk assessments by inhalation of PM. During the sampling period, the average concentration of PM10 was 274 ± 57 μg m−3 with a major fraction (73%) of organic material and secondary-related aerosols, and an insignificant portion of trace elements (TEs, ~ 3%). The size distribution showed that As and Se, markers of coal combustion, exhibited a mono-modal distribution with a major peak at 0.4–0.7 μm and the others mostly possessed mono−/bi-modal patterns with a major peak at 3.3–5.8 μm. The cancer risk (CR) resulted from PM10 metals by inhalation was estimated to be 2.91 × 10−5 for children and 7.75 × 10−5 for adults while non-cancer risk (NCR) was 2.10 for children and 0.70 for adults. Chromium (Cr) was the dominant species (~89%) of cancer risk in PM10. Road dust was a major fraction (~65%) to total metals in coarse PM (dp > 3.3 μm) whereas coal combustion was a dominant source (~55%) in submicron (dp < 1.1 μm) PM metals. However, traffic emissions (40%) and coal combustion (36%) were the dominant sources of CR since both emissions contributed major fractions (74%) to Cr, especially in submicron PM which exhibited high deposition efficiency of TEs into respiratory tracts, resulting in high CR in Linfen City.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.