Abstract

High particulate matter (PM) pollution frequently occurs in winter over northern China , resulting in threats to human health. To date, there are limited studies to link source apportionments and health risk assessments in the different size-resolved PM samples during high PM events. In this study, size-segregated PM samples were collected in Linfen, a typical coal-burning city, in northern China during a wintertime haze pollution. In addition to water-soluble ions and carbon contents, metallic elements in the different size-segregated PM samples were also determined for health risk assessments by inhalation of PM. During the sampling period, the average concentration of PM10 was 274 ± 57 μg m−3 with a major fraction (73%) of organic material and secondary-related aerosols, and an insignificant portion of trace elements (TEs, ~ 3%). The size distribution showed that As and Se, markers of coal combustion, exhibited a mono-modal distribution with a major peak at 0.4–0.7 μm and the others mostly possessed mono−/bi-modal patterns with a major peak at 3.3–5.8 μm. The cancer risk (CR) resulted from PM10 metals by inhalation was estimated to be 2.91 × 10−5 for children and 7.75 × 10−5 for adults while non-cancer risk (NCR) was 2.10 for children and 0.70 for adults. Chromium (Cr) was the dominant species (~89%) of cancer risk in PM10. Road dust was a major fraction (~65%) to total metals in coarse PM (dp > 3.3 μm) whereas coal combustion was a dominant source (~55%) in submicron (dp < 1.1 μm) PM metals. However, traffic emissions (40%) and coal combustion (36%) were the dominant sources of CR since both emissions contributed major fractions (74%) to Cr, especially in submicron PM which exhibited high deposition efficiency of TEs into respiratory tracts, resulting in high CR in Linfen City.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call