Abstract
The gene that encodes nuclear factor kappaB (NF-kappaB) essential modulator (or NEMO, also known as IKKgamma) is required for activation of the transcription factor NF-kappaB. We describe mutations in the putative zinc-finger domain of NEMO that result in an X-linked primary immunodeficiency characterized by hyper-IgM syndrome and hypohydrotic ectodermal dysplasia (XHM-ED). These mutations prevent CD40 ligand (CD40L)-mediated degradation of inhibitor of NF-kappaB alpha (IkappaB-alpha) and account for the following observations: B cells from XHM-ED patients are unable to undergo immunoglobulin class-switch recombination and antigen-presenting cells (APCs) are unable to synthesize the NF-kappaB-regulated cytokines interleukin 12 (IL-12) or tumor necrosis factor alpha (TNF-alpha) when stimulated with CD40L. Nevertheless, innate immunity is preserved in XHM-ED patients because APCs retain the capacity to respond to stimulation by lipopolysaccharide or Staphylococcus aureus Cowan's antigen (SAC). Overall, the phenotype observed in XHM-ED patients shows that the putative zinc-finger domain of NEMO has a regulatory function and demonstrates the definite requirement of CD40-mediated NF-kappaB activation for B cell immunoglobulin class-switching.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have