Abstract

Four bench-scale sponge-based aerobic nitrifying moving bed biofilm reactors (MBBRs) were used to treat municipal wastewater containing typical pharmaceuticals (1 mg/L, 2 mg/L and 5 mg/L). This preliminary research aims to investigate the effects of sulfadiazine (SDZ), ibuprofen (IBU) and carbamazepine (CBZ) on nitrification performance and explore specific microbial diversity and functional gene (Ammonia-oxidizing bacteria (AOB), amoA) of MBBRs. After 90 days of operation, the MBBR without pharmaceuticals could remove up to 97.4 ± 1.5% of NH4+-N while the removals of NH4+-N by the MBBRs with SDZ, IBU and CBZ were all suppressed to varying degrees. Based on the Shannon and Chao 1 index, the specific microbial diversity and richness in biofilm samples increased at a range of 1 mg/L to 2 mg/L pharmaceuticals (SDZ, IBU or CBZ) and started decreasing after the pharmaceutical concentration was higher than 2 mg/L. The determination of functional gene (AOB amoA) showed that Proteobacteria was the most dominant bacteria within all biofilms with the relative abundance ranging from 24.81% to 55.32%. Furthermore, Nitrosomonas was the most numerous genus in AOB, followed by Campylobacter and Thauera, whose relative abundance shifted under the pressure of different pharmaceuticals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call