Abstract
The induction of oxidative stress is a characteristic symptom of metal phytotoxicity and is counteracted by antioxidants such as glutathione (GSH) or homoglutathione (hGSH). The depletion of GSH│hGSH in fifteen-day-old alfalfa (Medicago sativa) plants pre-incubated with 1mM buthionine sulfoximine (BSO) affected antioxidant responses in a metal-specific manner under exposure to copper (Cu; 0, 6, 30 and 100μM) or cadmium (Cd; 0, 6 and 30μM) for 7 days. The phytotoxic symptoms observed with excess Cu were accompanied by an inhibition of root glutathione reductase (GR) activity, a response that was augmented in Cd-treated plants but reverted when combined with BSO. The synthesis of phytochelatins (PCs) was induced by Cd, whereas the biothiol concentration decreased in Cu-treated plants, which did not accumulate PCs. The depletion of GSH│hGSH by BSO also produced a strong induction of oxidative stress under excess Cu stress, primarily due to impaired GSH│hGSH-dependent redox homeostasis. In addition, the synthesis of PCs was required for Cd detoxification, apparently also determining the distribution of Cd in plants, as less metal was translocated to the shoots in BSO-incubated plants. Therefore, specific GSH│hGSH-associated mechanisms of tolerance were triggered by stress due to each metal.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have