Abstract
Recent studies demonstrated that lipids influence the assembly and efficiency of membrane-embedded macromolecular complexes. Similarly, lipids have been found to influence chloroplast precursor protein binding to the membrane surface and to be associated with the Translocon of the Outer membrane of Chloroplasts (TOC). We used a system based on chloroplast outer envelope vesicles from Pisum sativum to obtain an initial understanding of the influence of lipids on precursor protein translocation across the outer envelope. The ability of the model precursor proteins p(OE33)titin and pSSU to be recognized and translocated in this simplified system was investigated. We demonstrate that transport across the outer membrane can be observed in the absence of the inner envelope translocon. The translocation, however, was significantly slower than that observed for chloroplasts. Enrichment of outer envelope vesicles with different lipids natively found in chloroplast membranes altered the binding and transport behavior. Further, the results obtained using outer envelope vesicles were consistent with the results observed for the reconstituted isolated TOC complex. Based on both approaches we concluded that the lipids sulfoquinovosyldiacylglycerol (SQDG) and phosphatidylinositol (PI) increased TOC-mediated binding and import for both precursor proteins. In contrast, enrichment in digalactosyldiacylglycerol (DGDG) improved TOC-mediated binding for pSSU, but decreased import for both precursor proteins. Optimal import occurred only in a narrow concentration range of DGDG.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Molecular Cell Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.