Abstract
Although amino-terminal transit peptides of chloroplastic precursor proteins are known to be necessary and sufficient for import into chloroplasts, the mechanism by which they mediate this process is not understood. Another important question is whether different precursors share a common transport apparatus. We used 20-residue synthetic peptides corresponding to regions of the transit peptide of the precursor to the small subunit of ribulose bisphosphate carboxylase (prSS) as competitive inhibitors for the binding and translocation of precursor proteins into chloroplasts. Synthetic peptides with sequences corresponding to either end of the transit peptide had little to no effect on binding of prSS to chloroplasts, but significantly inhibited its translocation. Synthetic peptides corresponding to the central region of the transit peptide inhibited binding of prSS to chloroplasts. Each of the peptides inhibited binding or translocation of precursors to light-harvesting chlorophyll a/b protein, ferredoxin, and plastocyanin in the same manner and to a similar extent as prSS transport was inhibited. The results presented in this paper suggest that the central regions of the transit peptide of prSS mediate binding to the chloroplastic surface, whereas the ends of this transit peptide are more important for translocation across the envelope. Furthermore, all of the precursors tested appear to share components in the transport apparatus even though they are sorted to different chloroplastic compartments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.