Abstract

The perturbation of salt ions on the solubility of a monoclonal antibody was systematically studied at various pHs in Na(2)SO(4), NaNO(3), NaCl, NaF, MgSO(4), Mg(NO(3))(2) and MgCl(2) solutions below 350 mM. At pH 7.1, close to the pI, all of the salts increased the solubility of the antibody, following the order of SO(4)(2-) > NO(3)(-) > Cl(-) > F(-) for anions and Mg(2+) > Na(+) for cations. At pH 5.3 where the antibody had a net positive charge, the anions initially followed the order of SO(4)(2-) > NO(3)(-) > Cl(-) > F(-) for effectiveness in reducing the solubility and then switched to increasing the solubility retaining the same order. Furthermore, the antibody was more soluble in the Mg(2+) salt solutions than in the corresponding Na(+) salt solutions with the same anion. At pH 9.0 where the antibody had a net negative charge, an initial decrease in the protein solubility was observed in the solutions of the Mg(2+) salts and NaF, but not in the rest of the Na(+) salt solutions. Then, the solubility of the antibody was increased by the anions in the order of SO(4)(2-) > NO(3)(-) > Cl(-) > F(-). The above complex behavior is explained based on the ability of both cation and anion from a salt to modulate protein-protein interactions through their specific binding to the protein surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.