Abstract

2-trans enoyl-acyl carrier protein reductase (InhA) has been identified as a promising target for the development of novel chemotherapy for tuberculosis. In the present study, a series of heteroaryl benzamide derivatives were selected as potent inhibitors against InhA, and their binding properties with InhA were investigated at atomic and electronic levels by ab initio molecular simulations based on protein-ligand docking, classical molecular mechanics optimizations and ab initio fragment molecular orbital (FMO) calculations. The results evaluated by FMO highlight some key interactions between InhA and the derivatives, indicating that the most potent derivative has strong hydrogen bonds with the Met98 side chain of InhA and strong electrostatic interactions with the nicotinamide adenine dinucleotide cofactor. These findings provide informative structural concepts for designing novel heteroaryl benzamide derivatives with higher binding affinity to InhA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call