Abstract

BackgroundThe canonical Wnt signaling pathway has been considered as a potent oncogenic signaling in the initiation and progression of hematological malignancies. As a key regulator of the Wnt signaling pathway, the role of β-catenin in mantle cell lymphoma (MCL) pathogenesis and progression was investigated in this study.Material/MethodsA total of 30 MCL samples were collected from patients and were examined for the expression of β-catenin and p-GSK3β using immunohistochemical (IHC) staining. Further in vitro studies employed MTT and Western blot assays detecting proliferation and apoptosis-related proteins in MCL cell line Jeko-1, which were transfected with β-catenin shRNA or specific inhibitor XAV939.ResultsExpression of β-catenin and phosphorylated glycogen synthase kinase-3 beta (p-GSK3β) in MCL was significantly higher than those in controlled samples. In vitro studies indicated that β-catenin knockdown significantly inhibited cell proliferation and induced apoptosis in Jeko-1 cells. Furthermore, XAV939 induced apoptosis and growth arrest in Jeko-1 cells. Both inhibitory agents increased Bax and caspase 3 proteins, and decreased Bcl-2, c-Myc, and Cyclin D1 proteins.ConclusionsThe specific inhibition of β-catenin induces apoptosis and growth arrest, making it a potential therapeutic target against MCL.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call