Abstract

Abstract Specific gravity tests were performed on chromium ore processing residue (COPR), an expansive industrial byproduct of the historical processing of chromite ore, to determine if the complexity and heterogeneity of the particle microstructure may cause erroneous specific gravity results using ASTM D854-06 Method B as the baseline procedure. In complex, reactive industrial residuals such as COPR, specific gravity is an important indicator of the extent of weathering that has occurred. Specific gravity for weathered hard-brown (HB) COPR significantly differs from that of unweathered gray-black (GB) COPR, and laboratory testing can indicate the position of COPR along the GB to HB pathway. The difference between a “true” and an “apparent” specific gravity that accounts for the inclusion of closed pores was determined. Oven-drying of COPR at the ASTM standard temperature of 110±5°C does not cause mineral dehydration to affect specific gravity results. The apparent (avg.=3.146) and true (avg.=3.355) specific gravities of GB COPR are statistically different and should be reported as such. Pre-processing of GB COPR by mechanical grinding is necessary to open intraparticle voids, determined to be 6.2 % by volume, to the atmosphere and thus approach the true specific gravity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.