Abstract

The relaxation of the proton magnetization of water and hydrocarbons in a model medium of glass beads and quartz sand is studied by the NMR method. The spectrum of relaxation times of fluids is one-component in the model environment and three-component in quartz sand. The surface relaxivities measured in the model medium are used to determine the pore size distribution in quartz sand. Estimates of the specific surface area of sand based on the relaxation data are consistent with the values measured by the sorption method. The EPR method is used to determine the chemical nature of the active paramagnetic centers responsible for the surface relaxation of the proton magnetization. Differences in the relaxation behavior of aqueous and hydrocarbon fluids are interpreted within the framework of a simple model of surface relaxation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.