Abstract
Ethnopharmacological relevanceGeissoschizine methyl ether (GM) is an indole alkaloid that is a component of Uncaria Hook, and has been identified as the active component responsible for the anti-aggressive effects of the Uncaria Hook-containing traditional Japanese medicine, yokukansan. Recently, GM was shown to reach the brain by crossing the blood–brain barrier in rats following the oral administration of yokukansan. This finding suggested that there may be specific binding sites for GM in the brain. Here we show evidence that tritium-labeled GM ([3H]GM) binds specifically to several brain areas of rats. Materials and methodsMale rats were used. [3H]GM was synthesized from a demethylated derivative of GM. Specific binding sites of [3H]GM on brain sections were determined by quantitative autoradiography, and maximum binding densities (Bmax) and dissociation constants (Kd) were calculated. Several chemical compounds were used to clarify the molecules that recognize [3H]GM in the completion-binding assay. Emulsion microautoradiography was also performed to identify the cells that bind [3H]GM. ResultsSpecific binding of [3H]GM was observed in the frontal cortex, including the prefrontal cortical region (e.g., prelimbic cortex (PrL)), hippocampus, caudate putamen, amygdala, central medial thalamic nucleus, dorsal raphe nucleus (DR), and cerebellum. Bmax ranged between 0.65 and 8.79pmol/mg tissue, and Kd was between 35.0 and 232.6nM. Specific binding with relatively high affinity (Kd less than 62nM) was dense in the frontal cortical region, moderate in the DR, and sparse in the cerebellum. The specific binding of [3H]GM in the PrL was significantly replaced by the serotonin 1A (5-HT1A) receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (DPAT), 5-HT2A receptor antagonist ketanserin, 5-HT2B receptor agonist BW 723C86, 5-HT2C receptor agonist RO60-0175, adrenergic α2A receptor antagonist yohimbine, L-type Ca2+ channel blocker verapamil, and μ-opioid receptor antagonist naloxone. Similar results were obtained in the frontal cortex and DR, but not in the cerebellum. Microautoradiography revealed that [3H]GM signals were distributed throughout the frontal cortex, which included neuron-like large cells. ConclusionThese results demonstrate that specific binding sites for GM exist in rat brain tissue, and suggest that the pharmacological actions of GM are mainly associated with 5-HT receptors in the frontal cortex and DR. These results provide an insight into the neuropharmacology of GM and GM-containing herbal medicines.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have