Abstract
This paper presents a detailed numerical investigation to determine whether or not an increased specific absorption rate (SAR) in an adult using a mobile phone inside an elevator due to the multireflections of electromagnetic fields from the walls exceed the RF-exposure guidelines. A fully realistic heterogeneous human body model and an actual elevator size were employed. The nonuniform mesh finite-difference time-domain technique and a supercomputer were employed to obtain the SAR and other important parameters. The mobile phone was modeled as a lambda/2 dipole antenna placed at a distance of 16 mm from the head. For computations, operating frequencies of 900, 1500, and 2000 MHz with transmitting power of 250 mW were used. Computed results show that the peak spatial-average 10-g SAR depends on the position of the passenger and the antenna against the elevator walls. We observed a substantial increase in the whole-body average SAR and peak 10-g SAR values of the passenger in the elevator over their respective free-space values. However, the maximum values obtained do meet the basic restrictions described in the international RF safety guidelines. For example, the maximum values of the whole-body average and peak spatial-average SAR were 4.4% and 78% of the international RF safety guideline, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Microwave Theory and Techniques
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.