Abstract

It is well established that arsenic (As) pollution has a severe threat to food security and soil non-target organisms, however, its influences on soil fauna gut microbiota are poorly understood. The gut microbiota of soil fauna play an important role in host health and nutrient cycling. Here, we used dietary exposure to investigate the effects of As on the mortality and gut microbiota of two model soil collembolans (Folsomia candida and Onychiurus yodai) and determine the accumulation of As in collembolan body tissues. The results showed that, although As exposure did not induce the mortality of the two species, dose dependence of As accumulation was indeed detected in their body tissues. Oral As exposure (500 μg g−1 yeast) significantly altered the community structure (P < 0.05) of F. candida gut microbiota and reduced its diversity (by more than 20%; P < 0.05) compared to the control; however, no significant effects were observed in O. yodai gut microbiota. The two collembolan species possess significantly different gut microbiota (P < 0.05), which may partly explain the differences of the two collembolan gut microbiota response to As exposure. We further found that the genera Ochrobactrum, Geobacter and Staphylococcus were sensitive to As exposure in F. candida (P < 0.05), but these bacteria were low abundance and not altered in O. yodai. Moreover, the relative abundance of these bacteria was significantly correlated with As bioaccumulation in F. candida body tissues (P < 0.05, R2 > 0.6). Higher As bioaccumulation factor was also found in O. yodai body tissues compared to the F. candida. These results indicate that collembolan gut microbiota present a species-specific response to As and may be a more sensitive indicator than the mortality of collembolan.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.